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Abstract

Background: Traditionally in acute stroke clinical trials, the primary clinical outcome employed is a dichotomized
modified Rankin Scale (MRS). New statistical methods, such as responder analysis, are being used in stroke studies
to address the concern that baseline prognostic variables, such as stroke severity, impact the likelihood of a
successful outcome. Responder analysis allows the definition of success to vary according to baseline prognostic
variables, producing a more clinically relevant insight into the actual effect of investigational treatments. It is unclear
whether or not statistical analyses should adjust for prognostic variables when responder analysis is used, as the
outcome already takes these prognostic variables into account. This research aims to investigate the effect of
covariate adjustment in the responder analysis framework in order to determine the appropriate analytic method.

Methods: Using a current stroke clinical trial and its pilot studies to guide simulation parameters, 1,000 clinical trials
were simulated at varying sample sizes under several treatment effects to assess power and type | error. Covariate-
adjusted and unadjusted logistic regressions were used to estimate the treatment effect under each scenario. In the
case of covariate-adjusted logistic regression, the trichotomized National Institute of Health Stroke Scale (NIHSS) was
used in adjustment.

Results: Under various treatment effect settings, the operating characteristics of the unadjusted and adjusted analyses
do not substantially differ. Power and type | error are preserved for both the unadjusted and adjusted analyses.

Conclusions: Our results suggest that, under the given treatment effect scenarios, the decision whether or not to
adjust for baseline severity when using a responder analysis outcome should be guided by the needs of the study, as
type | error rates and power do not appear to vary largely between the methods. These findings are applicable to
stroke trials which use the mRS for the primary outcome, but also provide a broader insight into the analysis of binary
outcomes that are defined based on baseline prognostic variables.

Trial registration: This research is part of the Stroke Hyperglycemia Insulin Network Effort (SHINE) trial, Identification
Number NCT01369069.
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Background

Stroke is a potentially debilitating medical event that af-
fects approximately 800,000 people in the United States
each year, leaving as many as 30% of survivors perman-
ently disabled [1]. Given this impact, there is great de-
mand for treatments that significantly improve functional
outcome following a stroke. To date, few clinical trials for
the treatment of acute stroke have succeeded; of over 125
acute stroke clinical trials, only three successful treatment
methods have been identified [2,3].

One of the possible reasons for the excessive number of
neutral or unsuccessful stroke trials is the definition of
successful outcome utilized in the studies [4]. In clinical
trials, stroke outcome is most commonly measured by the
modified Rankin Scale (mRS) of global disability at 90 days.
The mRS is a valid and reliable measure of functional out-
come following a stroke [5]. Past trials have dichotomized
mRS scores into “success” and “failure”, scores of 0 to 1
(or 0 to 2) were considered to be “successes” while scores
greater than 1 (or 2) were considered to be “failures,” re-
gardless of baseline stroke severity [6-9]. This method fails
to take into account the understanding that baseline sever-
ity is highly correlated with outcome. New methods, such
as the global statistic, shift analysis, permutation testing
and responder analysis, are evolving to make better use of
the outcome data with the hopes of providing higher sen-
sitivity to detect true treatment effects [2,4,6,9-17].

Responder analysis, also known as the sliding dichotomy,
dichotomizes ordinal outcomes into “success” and “failure,”
but addresses the drawbacks of traditional dichotomization
by allowing the definition of success to vary by baseline
prognostic variables. Various trials have implemented the
responder analysis where baseline severity is defined by
one or many baseline prognostic factors [18-20]. Those
study subjects in a less severe prognosis group at baseline
must achieve a better outcome to be considered a trial
“success,” whereas a less stringent criterion for success is
applied to subjects in a more severe baseline prognosis cat-
egory. The currently enrolling Stroke Hyperglycemia Insu-
lin Network Effort (SHINE) trial employs responder
analysis for its primary efficacy outcome [18].

The SHINE trial is a large, multicenter, randomized clin-
ical trial designed to determine the efficacy and safety of
targeted glucose control in hyperglycemic acute ischemic
stroke patients. While the methodological details of the
SHINE trial are discussed elsewhere [18], it should be noted
that the primary outcome for efficacy is the baseline sever-
ity adjusted 90-day mRS score dichotomized as “success” or
“failure” according to a sliding dichotomy. Eligibility criteria
for SHINE require that a subject’s baseline NIHSS score
must be between 3 and 22, inclusively. Those with a “mild”
prognosis, defined by a baseline NIHSS score of 3 to 7,
must achieve a 90-day mRS of 0 to be classified as a “suc-
cess.” Those with a “moderate” prognosis, defined by a
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baseline NIHSS score of 8 to 14, must achieve a 90-day
mRS of 0 to 1 to be classified as a “success.” Finally, those
subjects with a “severe” prognosis, defined by a baseline
NIHSS score of 15 to 22, must achieve a 90-day mRS of 0
to 2 to be classified as a “success.” By using responder ana-
lysis with a trichotomized NIHSS, the threshold for success
is stringent for the milder strokes, while the moderate to se-
vere strokes are allowed to have more residual deficits in
the threshold for success.

One of the questions that arose from the trial’s Data and
Safety Monitoring Board was that of covariate adjustment.
Statistical analyses often adjust for prognostic factors, or
covariates, that may be predictive of the primary outcome,
such as baseline severity [21,22]; however, in the case of
SHINE, this prognostic variable is also used to define the
outcome. While the literature provides many resources on
the design and implementation of responder analysis, as
well as examples of trials which used responder analysis,
there are no clear resources discussing whether or not
statistical analyses should be adjusted for the prognostic
variables used to define successful outcome.

This research aims to investigate the effect of covariate
adjustment in the responder analysis framework, par-
ticularly when the covariate is involved in the definition
of successful outcome. The cut-points for the SHINE
trial are clinically, rather than statistically, defined and
so it is conceivable that adjustment for baseline severity
in the statistical analysis may account for additional vari-
ation and increase the power to detect a true treatment
effect. A simulation study is conducted to assess the
operating characteristics (power and type I error) of
categorically-adjusted and unadjusted analyses under
several possible treatment effect scenarios. In addition,
treatment effect estimates and their standard errors are
examined across the various scenarios. Since the primary
outcome for the SHINE trial is binary, we expect to see
an increase of standard error on the treatment effect es-
timates, consistent with the findings of Robinson and
Jewell [23]. However, also consistent with Robinson and
Jewell, we expect to see this increase in standard error
to be balanced by a movement of the treatment effect
estimate away from the null hypothesis.

By examining the effect of covariate adjustment in re-
sponder analysis, we aim to define the most appropriate
statistical approach to identify true treatment effects. Our
findings are not only applicable to the SHINE and other
stroke trials which use the mRS for the primary outcome,
but also provide insight into the appropriate use of cat-
egorical baseline prognostic variables in other trials which
use an ordinal scale as a primary outcome measure.

Methods
Simulation studies were performed to examine the perform-
ance of logistic regression models that were unadjusted
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and adjusted by a trichotomized baseline severity cat-
egory. Baseline severity category and criteria for success-
ful outcome were defined as in the SHINE trial described
above, and are summarized in Table 1. The type I error
rate and power were calculated and compared for each
method, as were the treatment effect estimates and their
standard errors.

The simulation parameters were guided by the SHINE
trial design. A total of 1,000 clinical trials were simulated
at sample sizes ranging from 498 to 1,958. This sample
size range allowed us to cover the planned SHINE sam-
ple size of 1,400 while also examining model behavior at
smaller and larger sample sizes. A 1:1 randomization
scheme was assumed for the purposes of this investiga-
tion. All analyses were performed using SAS version 9.2
(SAS Institute, Cary, NC, USA).

The prevalence of each baseline severity category was
guided by data from two prior pilot trials of hypergly-
cemia management in acute stroke, the Glucose Regula-
tion in Acute Stroke Patients (GRASP) [24] and
Treatment of Hyperglycemia in Ischemic Stroke (THIS)
[25] pilot trials. In the simulations, 42% of subjects were
classified as “mild” at baseline, 32% classified as “moder-
ate”, and the remaining 26% classified as “severe”. This
distribution of prognosis categories was imposed using a
uniform (0, 1) random variable. In order to simulate 90-
day mRS scores for the control group, we examined the
distribution of 90-day mRS scores for the control groups
in the GRASP and THIS pilot trials. Though the simula-
tion of 90-day mRS scores was primarily driven by the
results of the GRASP and THIS pilot trials, the National
Institute of Neurological Disorders and Stroke tissue
Plasminogen Activator (NINDS tPA) trial control data
[26] were used to aid in the approximation of mRS out-
come distributions within each of the baseline severity
strata. The NINDS tPA control data helped smooth the
distribution of mRS scores, as the GRASP and THIS
pilot trials each had small sample sizes that resulted in
several empty cells after baseline severity stratification.
The exact control group distribution of 90-day mRS
scores used in the simulation study is shown in Add-
itional file 1: Table S1.

Type I error rates for each method of analysis were
obtained by using the same proportion of success for
both the control and intervention groups, simulating the

Table 1 Sliding dichotomy criteria for successful outcome
in SHINE trial

Baseline Prognosis 90-day mRS for successful
NIHSS group outcome
3to7 Mild 0

8to 14 Moderate 0,1

15 to 22 Severe 01,2
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null hypothesis of “no treatment effect”. In order to as-
sess the power of each method, a treatment effect was
simulated in the data by altering the success prevalence
for the intervention group. A 7% treatment effect was
used, as this was the minimal clinically relevant absolute
difference in favorable outcome between the two treat-
ment groups in the SHINE study plan. For these ana-
lyses, power was examined under several scenarios as
illustrated in Table 2: (1) a “flat” scenario, in which the
7% treatment effect was held constant over the three
baseline severity strata; (2) a “varying” scenario, in which
the overall treatment effect is still 7%, but the magnitude
within strata is varied, where the mild and moderate
groups see the most benefit; (3) another “varying” sce-
nario, in which the severe group sees the most benefit;
(4) a “mild harm” scenario, where the mild group sees a
harmful treatment effect; and (5) a “severe harm” sce-
nario, in which the severe group sees a harmful treat-
ment effect.

In the first varying scenario, we applied an 8.6% treat-
ment effect in the mild category, a 9% treatment effect
in the moderate category and a 2% treatment effect in
the severe category; that is, there was an 8.6% increase
in prevalence of the 0 mRS for the mild stratum, a 9%
increase in the prevalence of the 0 to 1 range of mRS
scores for the moderate stratum, and a 2% increase in
the prevalence of the 0 to 2 range of mRS scores for the
severe stratum. This scenario is relevant to the SHINE
trial; it is similar to what we may observe if the investi-
gational treatment is largely beneficial to mild and mod-
erate stroke victims, but only marginally beneficial to
victims of severe stroke. The second varying treatment
effect scenario applies an opposite effect in which the in-
tensive glucose control intervention is largely beneficial
to more severe strokes, but only slightly beneficial to
those subjects having mild strokes. Additional file 1:
Table S1 shows the exact distribution of 90-day mRS
scores for the treatment groups under each of these
treatment effect scenarios. These distributions were used
to randomly assign 90-day mRS scores to each simulated
subject in each simulated trial, with the proportions of
success following the scenarios in Table 2. Given a sub-
ject’s simulated baseline severity stratum (mild, moderate
or severe), an assignment of “success” or “failure” was
made according to the sliding dichotomy definitions.

Logistic regression was used to investigate each of these
scenarios. The unadjusted case models “success” as a func-
tion only of treatment group, while the categorically-
adjusted case models “success” as a function of treatment
group and severity category. Severity was defined as
“mild,” “moderate” or “severe” based on the NIHSS prog-
nosis group discussed in the introduction. Power and type
I error rate were based on the proportion of simulated tri-
als at a given sample size which rejected the null
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Table 2 Success prevalence for simulated treatment effect
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scenarios

Treatment effect scenarios

Baseline
severity No treatment effect Flat Varying 1 Varying 2 Mild harm Severe harm
Mild 25% 32% 33.6% 27% 23% 33%
Moderate 35% 42% 44% 44% 50% 48%
Severe 15% 22% 17% 27.6% 26.7% 13%

hypothesis at a nominal level of 0.05. The treatment effect
and its standard error were estimated for each trial.

Results

The type I error rate at each sample size for each analysis
method is plotted in Figure 1. The nominal 5% reference
line is shown, along with the upper and lower 95% confi-
dence limits on this nominal level of significance. The
confidence limits were calculated using the formula for bi-
nomial proportion 95% confidence intervals. The confi-
dence limits remain the same at each sample size, as they
are based on the number of trials at each sample size
(1,000) rather than the sample size itself. The type I error
rates for both the unadjusted and categorically-adjusted
methods are within the 95% confidence limits for all the
sample sizes, hovering close to the nominal 5% level.

The first investigation of power was under a “flat”
treatment effect of 7% where the success rates in the
control group were 25%, 35% and 15% in the mild, moder-
ate and severe prognosis groups, respectively. The power
estimates for this “flat” treatment effect scenario are plot-
ted in Figure 2. The unadjusted and categorically-adjusted
methods do not significantly differ, with the categorically-

adjusted method having slightly greater power for most of
the sample sizes. As planned by the SHINE study investi-
gators, the 80% power threshold is crossed between 650
and 700 subjects per arm (1,300 to 1,400 subjects total).

The next two scenarios varied the treatment effects
across the mild, moderate and severe baseline categories
as 8.6%, 9% and 2%, respectively and 2%, 9% and 12.6%,
respectively. The power results for these two scenarios are
shown in Figure 3. As in the flat treatment effect scenario,
there is no drastic difference in the unadjusted and
categorically-adjusted methods with respect to power in
these varying treatment effect scenarios.

As previously mentioned, it is conceivable that one of
the prognosis groups may experience a slightly harmful
treatment effect. When 2% harm is experienced in either
the mild or the severe baseline prognosis category, the
unadjusted and adjusted analyses still appear to have a
similar performance, as shown in Figure 4. In the mild
harm scenario, the unadjusted and adjusted power curves
are still nearly stacked upon one another, with the power
curve for the adjusted analysis pulling slightly above that
of the unadjusted analysis at a few points. A more notice-
able difference can be seen in the severe harm scenario,
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Figure 1 Significance levels of unadjusted and categorically-adjusted methods.
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Figure 2 Power of unadjusted and categorically-adjusted methods under a flat 7% treatment effect.

where the adjusted analysis consistently has a slightly,
though not dramatically, higher power than that of the un-
adjusted analysis.

In addition to the plots in Figures 2, 3 and 4, we also ob-
served the treatment coefficient estimates and their stand-
ard errors for the adjusted and unadjusted models under
the various treatment effect scenarios at selected sample
sizes. The sample sizes of 498, 722, 946, 1,170 and 1,394

were chosen because they are the closest sample sizes to
those at which the planned interim and final analyses will
take place for SHINE. In addition to model estimates, the
true treatment effect coefficient was calculated by pooling
the nominal log-odds ratios for each prognosis group. To
visualize the bias of the estimate of each treatment effect
parameter and their standard errors, the simulation mean
squared error (MSE) was plotted against the squared bias
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in Figure 5. The MSE quantifies the accuracy and precision
of an estimate in terms of both the bias (the difference be-
tween the true and estimated treatment effect) and the
variance of the estimate. By plotting the MSE against the
squared bias, we can illustrate the adequacy of the estima-
tor. In Figure 5, the squared bias is depicted on the x-axis
and the MSE on the y-axis. While the bias decreases with
increasing sample size, the adjusted estimates of the treat-
ment effect parameter are consistently less biased than the
unadjusted estimates. For smaller sample sizes, the MSEs
for the adjusted analyses are negligibly larger than those
for the unadjusted analyses. The treatment coefficients and
standard errors are provided in Additional file 2: Table S2.

Discussion

Successful stroke treatments are desperately needed given
stroke’s large and detrimental effect on the worldwide
population. Consequently, statistical methods that offer
high power to detect a true treatment effect are also
needed. With this simulation study, we sought to deter-
mine whether adjustment for baseline severity within the
responder analysis setting would be beneficial or harmful
in terms of power and type I error rates when compared
to an unadjusted analysis.

The type I error rates did not differ substantially be-
tween the two methods. The experimental type I error
rates for both of the methods stayed within the 95% con-
fidence bounds. This is a welcomed result, as a test that
is either too liberal or too conservative, (rejects the null
hypothesis either more or less than the nominal level,
respectively), has implications on the power of the test.

The oscillation around the nominal 5% level of signifi-
cance is likely due to chance, and is to be expected in
simulated data. Since neither method shows consistently
larger type I error rates than the other, we can conclude
that there is no meaningful difference between the two
methods with respect to type I error.

The power appears to be approximately the same or
slightly higher for the adjusted analyses in the selected
scenarios. In the cases where the power is slightly higher,
the magnitude is not remarkable and offers little evi-
dence to suggest that adjusting by the single covariate
leads to significantly more power. Although the simula-
tion study presented is not exhaustive and, therefore,
does not provide additional insight regarding this, the
literature by Choi and Herndndez suggest that an in-
crease in power could occur as other important prog-
nostic variables are added to the model [27,28]. It is
reassuring, however, that neither method appears to be
detrimental to power under the given scenarios.

In terms of bias, the unadjusted analyses consist-
ently underestimate the nominal treatment effect,
while the adjusted analyses tend to be less biased, but
often slightly overestimate the nominal treatment
effect. Given the magnitude of the coefficient esti-
mates and their standard errors, neither of these bias
tendencies is substantial. In terms of MSE, the two
methods do not differ greatly as the sample size
increases. At the smaller sample sizes, the adjusted
analyses have larger MSE values due to increased
standard error; however, as the sample size increases,
the MSE values for the two methods converge.
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Though negligible differences were identified between the
adjusted and unadjusted models, researchers should keep
the randomization scheme of the study in mind when
deciding whether or not to adjust for baseline severity. In
general, it is advisable to “analyze as you randomize,” mean-
ing that any variable used as a stratification variable during
randomization should be included as a covariate in the
analysis in order to preserve nominal type I error rates and
power [22,29]. Baseline severity is often used as a stratifica-
tion variable in the randomization of acute stroke clinical
trials, and should be included as a covariate in these cases.

It is important to note that these analyses adjust categor-
ically for baseline severity. The categories - mild, moderate
and severe - are defined by the NIHSS score, which is a
larger scale ranging from 0 to 42 (limited to 3 through 22
in SHINE’s inclusion criteria). A one-unit change in the
NIHSS cannot easily be interpreted, as this change may
have different meanings depending on the combination of
neurological impairments and location along the scale.

Despite this issue, the NIHSS is sometimes used as a con-
tinuous measure in the literature [30,31]. This is not ne-
cessarily straightforward and should be done with caution.
It is possible that adjusting by the actual NIHSS score will
provide additional information to the model and increase
or maintain power in some treatment effect scenario(s).
However, due to uncertainties in the clinical interpretation
of a continuous NIHSS variable, adjustment by actual
NIHSS score has been left as a topic for future research.

Adjustment for other baseline prognostic variables may
also impact study power under the given scenarios. The
inclusion of additional covariates that were not used in
defining the primary outcome has not been examined in
these scenarios, as it is outside the primary focus of this
research. It is conceivable that the addition of multiple co-
variates could reduce overall power due to the increasing
standard error on the treatment effect estimate, as studied
by Robinson and Jewell [23] and discussed in the Back-
ground section of this paper.
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Conclusions

Our results show negligible differences between analysis
methods in the responder analysis setting, suggesting that
in most treatment effect scenarios, adjustment for baseline
severity in the primary analyses may best be guided by in-
dividual study needs rather than a blanket guideline for all
studies. Though we have not shown the results here, we
did examine other treatment effect scenarios which yield
similar results. These scenarios included a flat and varying
15% treatment effect (instead of the 7% specified in the
SHINE study plan), as well as a scenario in which the mild
group experienced 5% harm.

Overall, these results shed light on the important con-
cept of adjustment in the context of responder analysis.
Though this study only examined a single severity scale,
its findings are not restricted to use in stroke studies;
they can provide insight into the treatment of categorical
baseline prognostic covariates in other studies which use
responder analysis to define their primary outcome of
interest.

Additional files

Additional file 1: Table S1. Distribution of 90-day mRS scores.

Additional file 2: Table S2. Treatment coefficient estimates and their
standard errors for unadjusted and adjusted methods under different
treatment effect scenarios.
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